Three Acylated Saponins and a Related Compound from Pithecellobi um dulce

Kazuko Y oshikawa, ${ }^{,{ }^{\dagger}}{ }^{\dagger}$ Yuki Suzaki, ${ }^{\dagger}$ Masami Tanaka, ${ }^{\dagger}$ Shigenobu Arihara, ${ }^{\dagger}$ and S. K. Nigam ${ }^{\ddagger}$
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima 770, J apan, and Upgraded Department of Pharmacology and Therapeutics, King George's Medical College, Lucknow, India

Received J uly $25,199{ }^{*}$

Abstract

Four new oleanane-type triterpene glycosides, pithedulosides $\mathrm{H}-\mathrm{K}$ (1-4), were isolated from the seeds of Pithecellobium dulce. Their structures were established by extensive NMR experiments and chemical methods. Compounds 1-3 comprised acacic acid as the aglycon and either monoterpene carboxylic acid and its xyloside or monoterpene carboxylic acid as the acyl moiety at C-21. The oligosaccharide moieties linked to C-3 and C-28 were determined as α-L-arabinopyranosyl-(l $\rightarrow 2$)- α-L-arabinopyranosyl-($1 \rightarrow 6$)-[β-D-glucopyranosyl-(l $\rightarrow 2$)]- β-D-glucopyranosyl and α-L-arabinofuranosyl-(l $\rightarrow 4$)-[β-D-glucopyranosyl-($l \rightarrow 3)]-\alpha-L$-rhamnopyranosyl-(l $\rightarrow 2$)-β-d-glucopyranosyl ester, respectively. Compound 4 was established as an echinocystic acid 3-O-glycoside having the same sugar sequences as 1-3. Also obtained in this investigation was the known compound 5, which was identified as echinocystic acid 3-O- β-D-xylopyranosyl$(I \rightarrow 2)$ - α-L-arabinopyranosyl-($1 \rightarrow 6$)-[β-D-glucopyranosyl-(I $\rightarrow 2$)]- β-D-glucopyranoside.

Pithecel obium dulce Benth. (Leguminosae) is widely distributed throughout India and is al so found in South Africa and Australia. This species has been used for hedges and street trees. ${ }^{1,2}$ In a previous contribution, we reported the isolation and structure determination of seven saponins, termed pithedulosides A-G. ${ }^{3}$ The further investigation of the saponins of this plant, observed as a very complex mixture, afforded four new saponins, pithedulosides $\mathrm{H}-\mathrm{K}(\mathbf{1}-\mathbf{4})$, along with one known compound (5), which was previously isolated from the seeds of Albizzia lucida. ${ }^{4}$ We describe here the isolation and structure elucidation of pithedulosides H-K (1-4) by various NMR techniques, including COSY, HMQC, HMBC, TOCSY, and ROESY experiments and chemical degradation.

Results and Discussion

Pitheduloside H (1) was obtained as a major component from P. dulce seeds. The molecular formula was deduced as $\mathrm{C}_{100} \mathrm{H}_{158} \mathrm{O}_{49}$ from a quasi-molecular ion observed at $\mathrm{m} / \mathrm{z} 2166[\mathrm{M}+\mathrm{Na}]^{+}$in the FABMS and from the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. The IR spectrum showed carbonyl group ($1740 \mathrm{~cm}^{-1}$) and α, β-unsaturated carbonyl group ($1690 \mathrm{~cm}^{-1}$) absorptions. In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, the chemical shifts for the aglycon part of $\mathbf{1}$ exhibited some differences at positions $\mathrm{C}-17, \mathrm{C}-20-\mathrm{C}-$ 22 , and $\mathrm{C}-28-\mathrm{C}-30$ from those of pitheduloside A^{3} and were in good agreement with those of acaciaside A, which was previously determined as acacic acid 3,21,28-O-trisdesmoside. ${ }^{5}$ The acid hydrol ysis of $\mathbf{1}$ afforded an acacic acid Iactone (6), which was identified by comparison with published data, ${ }^{6}$ and L-arabinose, D-glucose, L-rhamnose, and D-xylose were confirmed by specific rotation using chiral detection in HPLC analysis. ${ }^{7}$ In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1}$, nine anomeric proton signals appeared at $\delta 6.28[1 \mathrm{H}, \mathrm{br}$ s, ara(f)], 6.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{glc} 3$), $5.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{rha}), 5.41$ (1 H , $\left.\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}_{2}\right), 5.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}_{4}\right), 5.09$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \operatorname{ara}_{2}$), $5.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ara}_{1}\right.$),

[^0]

$4.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{glc} \mathrm{c}_{1}\right)$, and $4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7$
$\mathrm{Hz}, \mathrm{xyl}$), respectively. The corresponding nine anomeric

Scheme 1

carbons were observed at $\delta 111.1$ [ara(f)], 95.7 (glc_{3}), 101.8 (rha), 105.9 (glc_{2}), 105.8 (glc_{4}), 105.7 (ara_{2}), 102.4 (ara_{1}), 105.0 (glc_{1}), and 100.2 (xyl) in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. Among the three anomeric carbons of the arabinose units, the chemical shift at $\delta 111.1$ demonstrated that one of those was in the α-furanose form. ${ }^{8}$ The configuration of all of the other sugars in the pyranose form in $\mathbf{1}$ was fully defined from the chemical shift and the coupling constant of each of the remaining anomeric protons. Accordingly, four glucoses and one xyl ose were established to have the β configuration, and two arabinopyranoses and one rhamnose to have the α configuration. The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1}$ showed 100 carbon signals, from which 30 signals were attributed to acacic acid and 50 signals were attributed to the sugar moieties. The remaining 20 signals were consistent with the presence of two monoterpene carboxylic acids. ${ }^{9}$ Upon alkaline hydrolysis of the crude saponin with 0.6 N NaOH in MeOH , a prosapogenin (7), a monoterpene glycoside (8), and a monoterpene (9) were obtained as major components. The alkaline hydrol ysis of $\mathbf{1}$ under the same conditions also afforded 7-9 as major products (Scheme 1). Compounds $\mathbf{8}$ and $\mathbf{9}$ were found to beidentical with the known compounds, (6S),-(2E)-2,6-dimethyl-6-O- β-d-xylopyranosyl-2,7-octadienoic acid and its aglycon, (6S),(2E)-2,6-dimethyl-6-hydroxyl-2,7-octadienoic acid, which have been obtained by the alkaline hydrolysis of calliandra saponin E isolated from Calliandra anomala. ${ }^{9}$

The NMR spectra of the prosapogenin 7, $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{22}$, suggested that this reaction product was acacic acid

6
Iactone 3-O-tetraglycoside, ${ }^{10}$ which contained two α-arabinopyranosyl and two β-glucopyranosyl units. The downfield-shifted ${ }^{13} \mathrm{C}$-NMR resonances among the sugar units were observed at $\delta 83.1,69.2$, and 79.7 , indicating the probable point of glycosidic linkage in the oligosaccharide as being at $\mathrm{C}-3 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY experiments revealed the glycosdic positions of attachment at C-2 and C-6 for glucose (glc_{1}), and $\mathrm{C}-2$ of arabinose (ara_{1}), respectively. Further, the HMBC spectrum showed connectivities between the $\mathrm{H}-1$ proton ($\delta 4.89$) of glC_{1} and C-3 ($\delta 88.8$) of the aglycon, the $\mathrm{H}-1$ proton ($\delta 5.40$) of glc_{2} and $\mathrm{C}-2(\delta 83.1)$ of glc_{1}, the H-1 proton ($\delta 5.10$) of ara ${ }_{1}$ and $\mathrm{C}-6\left(\delta 69.2\right.$) of glc_{1}, and the $\mathrm{H}-1$ proton ($\delta 5.05$) of ara ${ }_{2}$ and $\mathrm{C}-2(\delta 79.7)$ of ara a_{1}. In this way, $\mathbf{7}$ was formulated as acacic acid lactone 3-0-$\alpha-L$-arabinopyranosyl-($(\rightarrow 2)$ - $\alpha-L$-arabinopyranosyl-($(1 \rightarrow 6)$ [β-D-glucopyranosyl-(| $\rightarrow 2$)]- β-D-glucopyranoside.
The binding sites of the ester residues, that is, $\mathbf{8}$ and 9 in 1, were revealed by two acylation shifts observed at $\delta 6.32(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=11.1,5.6 \mathrm{~Hz})$ and $5.50(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=9.7,5.6 \mathrm{~Hz}$). Using both ROESY and HMBC experiments, these signals were assigned to $\mathrm{H}-21$ of aglycon and H-4 of xylose, respectively. Further, the HMBC spectrum exhibited significant corrlations between $\mathrm{H}-21$

Table 1. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Data of Aglycon Moieties and C-21 Portions of Compounds $\mathbf{1}-\mathbf{4}$ and $\mathbf{7}-\mathbf{9}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$

position	1	2	3	4	7	position	1	2	3	8	9
C-1	39.0	39.0	39.0	38.9	38.7	MTA 1	167.8	167.8	167.8	170.6	170.7
2	26.8	26.8	26.8	26.8	26.8	2	127.6	127.6	128.3	129.1	128.9
3	89.1	89.2	89.1	89.1	88.8	3	143.9	143.8	142.8	142.2	142.6
4	39.6	39.6	39.6	39.6	39.6	4	24.1	24.1	24.0	23.9	24.2
5	56.0	56.0	56.0	56.0	55.9	5	41.4	41.4	41.6	40.7	41.8
6	18.7	18.7	18.7	18.6	18.4	6	79.8	79.8	72.2	79.7	72.2
7	33.6	33.6	33.6	33.5	32.5	7	143.9	143.9	146.6	144.1	146.7
8	40.1	40.1	40.1	40.0	40.3	8	115.2	115.2	111.7	115.0	111.7
9	47.1	47.1	47.1	47.3	47.2	9	12.5	12.5	12.6	12.9	12.8
10	37.1	37.1	37.1	37.1	36.9	10	23.6	23.7	28.6	23.9	28.6
11	23.9	23.9	23.9	23.9	23.8						
12	123.1	123.1	123.1	122.5	124.6	xyl 1	100.2	100.1		100.3	
13	143.3	143.4	143.4	145.2	140.1	2	75.4	75.3		75.3	
14	42.1	42.1	42.1	42.1	43.3	3	75.1	75.1		78.7	
15	35.9	35.9	35.9	36.2	38.2	4	73.1	73.1		71.2	
16	73.9	73.9	73.9	74.8	66.7	5	63.2	63.2		67.0	
17	51.7	51.7	51.7	48.9	50.0						
18	41.1	41.0	41.1	41.5	41.7	MTA ${ }^{\prime}{ }^{\prime}$	167.7	167.6			
19	47.9	47.9	47.9	47.3	42.9	2'	128.6	133.9			
20	35.3	35.5	35.3	31.1	34.1	$3 '$	142.3	145.2			
21	77.1	77.1	77.1	36.3	83.4	4	23.6	23.6			
22	36.4	36.4	36.4	32.9	27.2	$5{ }^{\prime}$	40.5	40.8			
23	28.2	28.2	28.2	28.2	28.0	$6{ }^{\prime}$	72.1	72.1			
24	16.9	16.9	16.9	16.9	16.8	7	146.6	146.6			
25	15.9	15.9	15.9	15.7	15.7	$8 \prime$	111.7	111.7			
26	17.4	17.4	17.4	17.6	16.2	9^{\prime}	12.7	56.3			
27	27.3	27.3	27.3	27.3	28.8	10'	28.6	28.5			
28	174.5	174.5	174.5	180.1	181.2						
29	29.2	29.2	29.2	33.4	28.5						
30	19.2	19.2	19.2	24.8	24.2						

Table 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Data of Sugar Moieties of Compounds $\mathbf{1 - 4}$ and $\mathbf{7}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$

C-3 Sugar	1	2	3	4	7	C-28 Sugar	1	2	3
$\mathrm{glc}_{1} 1$	105.0	105.0	105.0	105.0	105.0	$\mathrm{glc}_{3} 1$	95.7	95.8	95.7
2	82.9	82.9	82.9	83.0	83.1	2	76.8	76.9	76.9
3	78.0	78.0	78.0	78.0	77.9	3	78.0	78.0	78.0
4	71.8	71.8	71.8	71.7	71.8	4	71.2	71.2	71.2
5	77.1	77.1	77.0	77.2	77.2	5	79.1	79.2	79.1
6	69.3	69.2	69.3	69.3	69.2	6	62.0	62.0	62.0
$\mathrm{ara}_{1} 1$	102.4	102.4	102.3	102.4	102.4	rha 1	101.8	101.8	101.9
2	79.6	79.6	79.6	79.6	79.7	2	70.6	70.5	70.6
3	72.8	72.8	72.8	72.8	72.8	3	82.0	82.0	82.0
4	67.6	67.6	67.6	67.7	67.6	4	79.1	79.1	79.1
5	64.4	64.4	64.4	64.5	64.5	5	69.2	69.2	69.2
$\operatorname{ara}_{2} 1$	105.7	105.7	105.7	105.7	105.7	6	18.9	18.9	18.9
2	72.8	72.8	72.8	72.8	72.8	$\mathrm{glc}_{4} 1$	105.8	105.8	105.8
3	74.3	74.3	74.3	74.3	74.3	2	75.4	75.4	75.4
4	69.0	69.0	69.0	69.0	68.9	3	78.3	78.3	78.2
5	66.8	66.8	66.8	67.0	66.7	4	71.8	71.8	71.8
$\mathrm{glc}_{2} 1$	105.9	105.9	105.9	105.9	106.0	5	78.3	78.3	78.2
2	75.6	75.7	75.6	75.7	75.8	6	62.7	62.8	62.8
3	78.0	78.0	78.0	78.0	78.0	ara(f) 1	111.1	111.1	111.1
4	71.8	71.8	71.8	71.7	71.7	2	84.5	84.5	84.5
5	78.3	78.3	78.2	78.3	78.3	3	78.4	78.4	78.4
6	62.7	62.8	62.8	62.7	62.7	4	85.4	85.4	85.5
						5	62.5	62.6	62.5

of the aglycon and the carbonyl carbon (δ 167.8) of the monoterpene xyloside unit, and between $\mathrm{H}-4$ of xylose and the carbonyl carbon (δ 167.7) of the outer monoterpene unit. Therefore, a (6S),(2E)-2,6-dimethyl-6-O-(4-O-(6'S), (2'E)-2', 6^{\prime}-dimethyl-6'-hydroxyl-2', 7^{\prime}-octadienoyl-β-D-xylopyranosyl)-2,7-octadienoyl residue was located at $\mathrm{C}-21$ of the aglycon.

The FABMS of 1 showed a major fragmentation peak at $m / z 1564$, indicating that the sugar moiety linked to C-28 accounted for 602 mass units (four sugar residues). ${ }^{11}$ The characteristic signal at $\delta 95.7$ among the remaining four anomeric carbons ($\delta 95.7,101.8,105.8$, 111.1) suggested that this sugar residue must be directly attached to C-28 through an ester bond. Indeed, the corresponding anomeric proton at $\delta 6.08$ was correlated
with C-28 at $\delta 174.5$ in the HMBC spectrum, and this inner sugar was disclosed as a β-glucopyranosyl group. Starting from the anomeric proton at $\delta 6.08$ of glucose, the extensive NMR experiments conducted in this investigation allowed the full assignment of the sugar moieties at C-28 (Table2). The long-range correlations between $\mathrm{C}-28$ ($\delta 174.5$) of the aglycon and $\mathrm{H}-1(\delta 6.08)$ of glucose (glC_{3}), and C-2 ($\delta 76.8$) of glucose (glc_{3}) and $\mathrm{H}-1(\delta 5.92)$ of rhamnose, and $\mathrm{C}-3(\delta 82.0)$ of rhamnose and C-1 ($\delta 5.35$) of glucose (glc 4), and C-4 ($\delta 79.1$) of rhamnose and $\mathrm{H}-1(\delta 6.28)$ of arabinose [ara(f)] were all definitely observed. Thus, the structure of sugar moiety at C-28 was determined to be $\alpha-\mathrm{L}$-arabinofura-nosyl-(1 $\rightarrow 4$)-[β-D-glucopyranosyl-(I $\rightarrow 3$)]- $\alpha-$-L-rhamnopy-ranosyl-(l $\rightarrow 2)-\beta$-D-glucopyranoside. Consequently, the
whole structure of $\mathbf{1}$ (pitheduloside H) was concluded to be 3-O-\{ α-L-arabinopyranosyl-($(\rightarrow 2)$ - $\alpha-$ L-arabinopy-ranosyl-(1 $\rightarrow 6$)-O-[β-D-glucopyranosyl-($(1 \rightarrow 2)]-\beta$-D-glucopy-ranosyl\}-21-O-[(6S),(2E)-(2,6-dimethyl-6-O-[4-O-(6'S),-(2'E)-2', 6^{\prime}-dimethyl-6'-hydroxyl-2', 7^{\prime}-octadienoyl- β-D-xylopyranosyl]-2,7-octadienoyl] acacic acid 28-O- $\alpha-$ -arabinofuranosyl-($1 \rightarrow 4$)-[β-D-glucopyranosyl-($(\rightarrow 3)]-\alpha-L-$ rhamnopyranosyl-(l-2)- β-D-glucopyranosyl ester.
Pithedulosidel (2) gave a $[\mathrm{M}+\mathrm{Na}]^{+}$ion at $\mathrm{m} / \mathrm{z} 2182$ in the FABMS, 16 mass units higher than that of $\mathbf{1}$, suggesting the presence of an additional oxygen-bearing function in 2. Hydrolysis of $\mathbf{2}$ with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ gave $\mathbf{6}$, and the sugar units determined by chiral HPLC analysis were again, L-arabinose, D-glucose, L-rhamnose, and D-xylose. In the ${ }^{13} \mathrm{C}$-NMR spectrum, the chemical shifts for the aglycon moiety and sugar moieties of $\mathbf{2}$ bore a close resemblance to those of $\mathbf{1}$, indicating that both compounds had a common sugar-substitution pattern. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data showed al so the presence of $\mathbf{8}$ and a second monoterpene carboxylic acid for the acyl moieties at C-21. Examination of the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data obtained for the second acyl moiety in $\mathbf{2}$ revealed that it differed from $\mathbf{1}$ only in having a hydroxymethyl group ($\delta 56.3$) and no methyl group ($\delta 12.7$) at C-2. Thus, the second acid in $\mathbf{2}$ was shown to be (2E)-2-hydroxylmethyl6 -hydroxy-6-methyl-2,7-octadienoic acid (10). ${ }^{12}$ Alkaline hydrolysis of $\mathbf{2}$ gave only prosapogenin 7 and the monoterpene xyloside 8. Consequently, the absolute configuration of $\mathbf{1 0}$ was not established. HMBC correlations between $\mathrm{H}-21$ and $\mathrm{C}-1$ of $\mathrm{MTA}_{1}, \mathrm{H}-1$ ($\delta 4.84$) of xylose and C-6 of MTA ${ }_{1}$, and $\mathrm{H}-4$ (δ 5.48) of xylose and C-1' of MTA $_{2}$ established the presence of a substituent at C-21. From an analysis of all the data obtained, the structure of $\mathbf{2}$ was concluded to be 3-0-$\{\alpha-L-a r a b i n o p y r a n o s y l-(\mid \rightarrow 2)-\alpha-L-a r a b i n o p y r a n o s y l-(1 \rightarrow 6)-$ O-[β-D-glucopyranosyl-(|l-2)]- β-D-glucopyranosyl $\}$-21-O[(6S),(2E)-2,6-dimethyl-6-O-[4-O-(2'E)-2',6'-dihydroxyl-6^{\prime}-methyl $-2^{\prime}, 7^{\prime}$-octadienoyl)- β-D-xylopyranosyl $]-2,7-$ octadienoyl]-acacic acid 28-O- $\alpha-$-L-arabinofuranosyl($1 \rightarrow 4$)-[β-D-glucopyranosyl-($\mid \rightarrow 3$)]- α-L-rhamnopyranosyl($1 \rightarrow 2$)- β-D-glucopyranosyl ester.

In the FABMS, pitheduloside J(3) showed a quasimolecular ion at $\mathrm{m} / \mathrm{z} 1844,314$ mass units lower than 2. Acid hydrolysis of $\mathbf{3}$ afforded L-arabinose, D-glucose, and L-rhamnose by HPLC analysis, besides 6. The ${ }^{13} \mathrm{C}$ NMR chemical shifts due to the aglycon moiety and the sugar moieties attached at C-3 and C-28 of $\mathbf{3}$ were superimposable on those of $\mathbf{2}$. In contrast, the acyl moiety at C-21 in 3, the only monoterpene unit in the molecular, was not glycosylated at C-6 ($\delta 72.2$) (Table 1). Alkaline hydrolysis of $\mathbf{3}$ afforded $\mathbf{7}$ and $\mathbf{9}$ as detected by TLC. Hence, the structure of $\mathbf{3}$ was concluded to be 3-O-\{ α-L-arabinopyranosyl-($\mid \rightarrow 2$)- $\alpha-L-a r a b i n o p y r a n o s y l-~$ ($1 \rightarrow 6$)-O-[β-D-glucopyranosyl-((l-2)]- β-D-glucopyranosyl $\}$ -21-O-(6S),(2E) -2,6-dimethyl-6-hydroxyl-2,7-octadienoyl acacic acid $28-0-\alpha-L$-arabinofuranosyl-($1 \rightarrow 4$)-[β-D-glu-copyranosyl-(|l-3)]- α-L-rhamnopyranosyl-(|l-2)- β-D-glucopyranosyl ester.

Pitheduloside K (4) showed a quasi-molecular ion peak at $\mathrm{m} / \mathrm{z} 1059[\mathrm{M}-\mathrm{H}]^{-}$in the FABMS, indicating a molecular formula of $\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{O}_{22}$. Acid hydrolysis of $\mathbf{4}$ afforded echinocystic acid (11) ${ }^{3}$ as an aglycon, and D-glucose and L-arabinose in a 1:1 ratio. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts for the aglycon of $\mathbf{4}$ were very similar to those of pitheduloside $A,{ }^{3}$ indicating that $\mathbf{4}$ was echi-
nocystic acid 3-O-glycoside. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ sugar signals at the C-3 position for $\mathbf{4}$ were very similar to analogous data for $\mathbf{1}$. Therefore, $\mathbf{4}$ was formulated as echinocystic acid 3-O- α-L-arabinopyranosyl-(I $\rightarrow 2$)- $\alpha-$-L-arabinopyra-nosyl-(1 $\rightarrow 6$)-[β-D-glucopyranosyl-(I $\rightarrow 2$)] β - -D -glucopyranoside.
Compound 5 showed the same quasi-molecular ion peak at $\mathrm{m} / \mathrm{z} 1059[\mathrm{M}-\mathrm{H}]^{-}$as 4 and gave L -arabinose, D-glucose, D-xylose, and $\mathbf{1 1}$ on acid hydrolysis. The carbon signals of $\mathbf{5}$ were superimposable on those of compound 2 from Orsini et al. ${ }^{4}$ Therefore, 5 was identified with echinocystic acid 3-O- β-D-xylopyranosyl($1 \rightarrow 2$)- $\alpha-\mathrm{L}$-arabinopyranosyl-($1 \rightarrow 6$)-[β-D-glucopyranosyl$(1 \rightarrow 2)]-\beta$-D-glucopyranoside.

Experimental Section

General Experimental Procedures. Melting points were measured with a Yanagimoto micromelting point apparatus and were uncorrected. Optical rotations were taken on a J ASCO DIP-360 polarimeter. IR spectra were recorded on a J ASCO FT/IR-5300, NMR spectra on Varian UNITY-600 and/or J EOL GSX-400 spectrometer in pyridine- d_{5} solutions using TMS as internal standard. NMR experiments included ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ COSY, HMBC, TOCSY, and ROESY. Coupling constants (J values) are given in Hz. The FABMS (Xe gun, 10 kV , triethylene glycol as the matrix) was measured on a J EOL J MS-HX-100 mass spectrometer. HPLC separations were performed with a Hitachi HPLC system (L-6200 Pump, l-4000 UV).

Plant Material. The seeds of P. dulcewere col lected in August 1995. A voucher specimen is deposited in the Herbarium of the National Botanical Research Institute, Lucknow, India.
Extraction and Isolation. The powdered seeds (5.0 kg) of P. dulce were percolated with EtOH , and the alcoholic extract was partitioned, in turn, with petroleum ether and $\mathrm{Et}_{2} \mathrm{O}$. The EtOH -soluble residue was dissolved in the least amount of EtOH and the crude saponins precipitated by addition of a large excess of ether. The ether was decanted and the saponin mixture filtered over Si gel to yield a straw-col ored powder (150 g). An aliquot (75 g) was subjected to Si gel column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixtures of increasing polarity to obtain fractions 1 to 6. The most polar fraction $6(55 \mathrm{~g})$ was passed through an Amberlite XAD-2 column, following elution with 80% and $100 \% \mathrm{MeOH}$. The $80 \% \mathrm{MeOH}$ eluate (9.0 g) was chromatographed over Sephadex LH-20 with MeOH to give three fractions, A (3.81 g), B (1.12 g), and C (2.24 g). Fraction A was subjected to further Si gel column chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(6$: 4:1), and finally purified by HPLC on ODS with 33$30 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to furnish pithedulosides $\mathrm{H}(\mathbf{1}, 80$ mg), I ($\mathbf{2}, 20 \mathrm{mg}$), and J ($\mathbf{3}, 30 \mathrm{mg}$). Fraction C was subjected to HPLC on ODS with $31 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ to yield pitheduloside K (4, 180 mg) and compound 5 (35 mg).

Pitheduloside H (1): col orless needles; mp 196-198 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-23.6^{\circ}$ (c 3.1, MeOH); FT-IR (dry film) $v_{\text {max }}$ 3410 (OH), 1740, 1690 ($\mathrm{C}=0$) cm^{-1}; 1H-NMR (600 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), $1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right.$), $1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right)$, $1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-23\right), 1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, Me of rha), $1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 3.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,4.9 \mathrm{~Hz}, \mathrm{H}-3)$,
$3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,5.2 \mathrm{~Hz}, \mathrm{H}-18), 5.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16)$, 5.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), $5.50(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.7,5.6 \mathrm{~Hz}, \mathrm{H}-4$ of xyl), $6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.1,5.6 \mathrm{~Hz}, \mathrm{H}-21)$, anomeric H $4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{xyl}), 4.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$, gl_{1}), $5.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ara}_{2}\right), 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2$ $\mathrm{Hz}, \mathrm{ara}_{1}$), $5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}$), $5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7.7 \mathrm{~Hz}, \mathrm{glc} \mathrm{c}_{2}\right), 5.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, rha), $6.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, \mathrm{glc}_{3}\right), 6.28[1 \mathrm{H}, \mathrm{br} \mathrm{s}, \operatorname{ara}(\mathrm{f})] ; \mathrm{MTA}_{1} 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ 10), 1.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-9$), 5.26 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,1.1 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-8\right), 5.43\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.8,1.1 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 6.22(1 \mathrm{H}$, $\left.\mathrm{dd}, \mathrm{J}=17.8,11.0 \mathrm{~Hz}, \mathrm{H}_{2}-7\right), 7.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\mathrm{H}-3$); $\mathrm{MTA}_{2} 1.44$ (3H, s, H3-10), 1.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-9$), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,2.1 \mathrm{~Hz}, \mathrm{H}_{2}-8$), $5.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3$, $\left.2.1 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 6.17$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,11.0 \mathrm{~Hz}, \mathrm{H}_{2}-7$), $6.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Tables 1 and 2 ; FABMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 2166,[\mathrm{M}+\mathrm{Na}-602]^{+}$ 1564.

Pitheduloside I (2): colorless needles; mp 222-224 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-16.2^{\circ}$ (c $2.0, \mathrm{MeOH}$); FT-IR (dry film) $\nu_{\text {max }}$ $3400(\mathrm{OH}), 1740,1685(\mathrm{C}=0) \mathrm{cm}^{-1} ; 1 \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.09$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), $1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right)$, $1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-23\right), 1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, Me of rha), $1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 3.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.0 \mathrm{~Hz}, \mathrm{H}-3)$, $3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,4.5 \mathrm{~Hz}, \mathrm{H}-18), 5.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16)$, $5.48(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.6,5.5 \mathrm{~Hz}, \mathrm{H}-4$ of xyl$), 5.64(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-12), 6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.1,5.6 \mathrm{~Hz}, \mathrm{H}-21)$, anomeric H $4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{xyl}), 4.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}$, glc_{1}), $5.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ara}_{2}\right), 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2$ $\left.\mathrm{Hz}, \mathrm{ara}_{1}\right), 5.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}_{3}\right), 5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=6.9 \mathrm{~Hz}, \mathrm{glc}_{2}\right), 5.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, rha $), 6.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, \mathrm{glc}_{3}\right), 6.28[1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}$, ara(f)]; MTA 1.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-10$), 1.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-9$), $5.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0$, $1.1 \mathrm{~Hz}, \mathrm{H}_{2}-8$), 5.38 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5,1.1 \mathrm{~Hz}, \mathrm{H}_{2}-8$), 6.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5,11.0 \mathrm{~Hz}, \mathrm{H}_{2}-7$), $7.08(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.3$, $1.3 \mathrm{~Hz}, \mathrm{H}-3$); MTA $1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-10\right)$, 4.73 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-$ 9), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,2.0 \mathrm{~Hz}, \mathrm{H}_{2}-8$), 5.56 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.=17.3,2.0 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 6.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,10.6 \mathrm{~Hz}$, $\mathrm{H}_{2}-7$), $7.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Tables 1 and 2; FABMS m/z [M + Na] 2182, [$\mathrm{M}+\mathrm{Na}$ $-602]^{+} 1580$.
PithedulosideJ (3): col orless needles; mp 199-201 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-28.0^{\circ}$ (c 2.2, MeOH); FT-IR (dry film) $\nu_{\text {max }}$ 3400 (OH), 1740, 1690 ($\mathrm{C}=0$) cm ${ }^{-1}$; 1-1 $-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right)$, $1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-23\right), 1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, Me of rha), $1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 3.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,4.1 \mathrm{~Hz}, \mathrm{H}-3)$, 3.44 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.9,3.6 \mathrm{~Hz}, \mathrm{H}-18$), 5.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $5.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 6.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,5.8 \mathrm{~Hz}, \mathrm{H}-21)$, anomeric H $\left.4.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{glc})_{1}\right), 5.05(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=6.6 \mathrm{~Hz}, \operatorname{ara}_{2}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \operatorname{ara}_{1}\right), 5.35$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc} 4), 5.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}_{2}\right)$, $5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{rha}), 6.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{glc}_{3}\right), 6.28$ [1H, d, J $=1.4 \mathrm{~Hz}$, ara(f)]; MTA $1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-10\right), 1.88$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-9$), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,1.9 \mathrm{~Hz}, \mathrm{H}_{2}-8$), 5.57 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3,1.9 \mathrm{~Hz}, \mathrm{H}_{2}-8$), $6.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.3$, $\left.10.7 \mathrm{~Hz}, \mathrm{H}_{2}-7\right), 7.02(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}-$ NMR data, see Tables 1 and 2; FABMS m/z [M + Na] ${ }^{+}$ 1868, [$\mathrm{M}+\mathrm{Na}-602]^{+} 1266$.
Pitheduloside K (4): col orless needles; mp 200-202 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-4.1^{\circ}$ (c $3.5, \mathrm{MeOH}$); FT-IR (dry film) $v_{\text {max }}$ $3410(\mathrm{OH}), 1690(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 1.05$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right)$,
1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-23$), 1.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27$), 3.38 (1 H , dd, J $=11.2,4.0 \mathrm{~Hz}, \mathrm{H}-3), 3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,4.5 \mathrm{~Hz}$, $\mathrm{H}-18), 5.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 5.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12)$, anomeric H $4.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{glc}_{1}\right), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\left.\operatorname{ara}_{2}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \operatorname{ara}_{1}\right), 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, \mathrm{glC}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Tables 1 and 2; FABMS $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{-}$1059, [$\left.\mathrm{M}-\mathrm{H}-\mathrm{ara}\right]^{-} 927,[\mathrm{M}-\mathrm{H}-$ $\mathrm{glc}]^{-} 897$.

Compound 5: colorless needles; mp 218-220 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-10.0^{\circ}$ (c $0.8, \mathrm{MeOH}$); FT-IR (dry film) $v_{\text {max }} 3410$ (OH), $1690(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right.$) δ 0.88 (3H, s, H $\mathrm{H}_{3}-25$), $1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 1.04$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-$ 26), 1.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29$), $1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 1.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-23\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 3.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.0$ $\mathrm{Hz}, \mathrm{H}-3$), 3.60 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,4.5 \mathrm{~Hz}, \mathrm{H}-18$), 5.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $5.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12)$, anomeric H 4.90 (1 H , $\left.\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{glC}_{1}\right), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{xyl}), 5.13$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}$, ara), $5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{glc})_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Orsini et al.; ${ }^{4}$ FABMS $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{-}$ 1059.

Acid Hydrolysis of Pitheduloside \mathbf{H} (1): a solution of $\mathbf{1}(30 \mathrm{mg})$ in $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$-dioxane (1:1) was heated at $100^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The EtOAc layer was subjected to Si gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH (30:1) to give acacic acid lactone ($6,5 \mathrm{mg}$).
Acacic acid lactone (6): col orless needles; mp 255$257^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+1.7^{\circ}$ ($\mathrm{c} 0.5, \mathrm{CHCl}_{3}$); ${ }^{1 \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz} \text {, }}$ $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 0.84,0.89,0.96,1.04,1.08,1.23,1.35$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3), 4.26(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-21), 4.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.4,5.0 \mathrm{~Hz}, \mathrm{H}-16)$, 5.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 15.8$ (C-25), 16.3 (C-26), 16.5 (C-24), 18.8 (C-6), 23.8 (C-11), 24.3 (C-30), 27.2 (C-22), 28.1 (C-2), 28.6 (C-23), 28.7 (C29), 28.8 (C-27), 32.6 (C-7), 34.2 (C-20), 37.4 (C-10), 38.2 (C-15), 38.9 (C-1), 39.4 (C-4), 40.4 (C-8), 41.8 (C-18), 43.0 (C-19), 43.4 (C-14), 47.4 (C-9), 50.0 (C-17), 56.0 (C-5), 66.7 (C-16), 78.1 (C-3), 83.5 (C-21), 124.6 (C-12), 140.3 (C-13), 181.3 (C-28); FABMS m/z [M - H] 469.
The aqueous layer was neutralized with Amberlite IRA-35 and evaporated in vacuo to dryness. The identification and the D or L configuration of sugar was determined by using RI detection (Waters 410) and chiral detection (Shodex OR-1) by HPLC (Shodex RSpak NH2P-50 4E, $95 \% \mathrm{CH}_{3} \mathrm{CN}, 1 \mathrm{~mL} / \mathrm{min}$, room temperature) by comparison with an authentic sugar (10 mmol each of L-ara, D-glc, L-rha, and D-xyl). The sugar portion gave the following peaks: L-(-)-rha $7.40 \mathrm{~min} ; \mathrm{D}-(+)$-xyl $12.50 \mathrm{~min} ; \mathrm{L}-(+)$-ara 14.00 min , and D-(+)-glc 29.10 min .
Alkaline Hydrolysis of Saponin Fraction. A solution of fraction $\mathrm{A}(500 \mathrm{mg})$ in $0.6 \mathrm{~N} \mathrm{NaOH}(80 \mathrm{~mL})$ in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$) was heated at $30^{\circ} \mathrm{C}$ for 4 days. The reaction mixture was adjusted to pH 1.0 with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$, and extracted with n-BuOH. Then-BuOH layer was subjected to HPLC on ODS ($22-25 \% \mathrm{CH}_{3} \mathrm{CN}$) to give a prosapogenin ($\mathbf{7 , 2 0 \mathrm { mg } \text {), a monoterpene xyloside }}$ ($8,35 \mathrm{mg}$), and a monoterpene ($9,40 \mathrm{mg}$).

Compound 7: colorless needles; mp 174-176 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-22.3^{\circ}$ (c $0.7, \mathrm{MeOH}$); FT-IR (dry film) $v_{\text {max }} 3380$ (OH), $1760(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta$ 0.79 (3H, s, H3-26), $0.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-25\right), 0.92$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-$ 29), 1.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30$), $1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-24\right), 1.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-23\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-27\right), 3.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,4.4$ $\mathrm{Hz}, \mathrm{H}-3$), 2.78 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,6.5 \mathrm{~Hz}, \mathrm{H}-18$), 4.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $5.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12)$, anomeric H $4.89(1 \mathrm{H}$,
$\left.\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{glc}_{1}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ara}_{2}\right), 5.10$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{ara}_{1}$), $5.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{glc}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Tables 1 and 2; FABMS m/z [M H] 1057.

Compound 8: colorless oil; $[\alpha]^{25} \mathrm{D}-14.2^{\circ}$ (c 3.6, MeOH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right.$ 10), $1.80\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}_{2}-5\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-9\right)$, $2.47\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.8,7.3 \mathrm{~Hz}, \mathrm{H}_{2}-4\right), 5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-8\right), 5.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 6.22(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=17.8,10.8 \mathrm{~Hz}, \mathrm{H}-7), 7.14(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3)$, 4.86 (1H, d, J $=7.3 \mathrm{~Hz}, \mathrm{H}-1$ of xyl$)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Table 1; FABMS m/z [M - H] 315.

Compound 9: colorless oil; $[\alpha]^{25} \mathrm{D}+11.7^{\circ}$ (c 0.3 , MeOH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-\right.$ 10), $1.82\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}_{2}-5\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-9\right)$, $2.50\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.8,7.3 \mathrm{~Hz}, \mathrm{H}_{2}-4\right), 5.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-8\right), 5.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 6.15(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=17.8,10.8 \mathrm{~Hz}, \mathrm{H}-7), 7.24(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data, see Table 1; FABMS m/z [M - H] 183.

Alkaline Hydrolysis of Pithedulosides H-J (13). Compounds 1-3 (each 5 mg) was hydrolyzed same way as described for the crude saponin fraction to yield a prosapogenin (7), a monoterpene xyloside (8), and a monoterpene (9) from 1, 7 and 8 from 2, and 7 and 9 from 3. TLC data: 7, $\mathrm{R}_{\mathrm{f}} 0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$, 65:30:4); 8, $\mathrm{R}_{\mathrm{f}} 0.19$; 9, $\mathrm{R}_{\mathrm{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 25\right.$: 2:0.1).

Acid Hydrolysis of Pithedulosides I (2) and J (3). Acid hydrolysis of $\mathbf{2}$ and $\mathbf{3}$ (each 5 mg) was carried out in the same manner as described for $\mathbf{1}$ to yield acacic acid lactone (6) on TLC: 6, $\mathrm{R}_{\mathrm{f}} 0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 25\right.$: 1). The aqueous layer was carried out in the same way as described for $\mathbf{1}$ to give L-ara, $\mathrm{d}-\mathrm{glc}$, L-rha, and $\mathrm{D}-\mathrm{xyl}$ from 2, and L-ara, D-glc, and L-rha from 3.

Acid Hydrolysis of Pitheduloside K (4). Acid hydrolysis of $\mathbf{4}(40 \mathrm{mg})$ was carried out as described for $\mathbf{1}$ to yield echinocystic acid (11, 15 mg): colorless needles, mp $225-227^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+39.8^{\circ}$ (c 3.6, EtOH); FT-IR (dry film) $v_{\max } 3400(\mathrm{OH}), 1680(\mathrm{C}=\mathrm{O}), 1080,1050$ (OH) cm^{-1}; EIMS m/z [M] ${ }^{+}$472. The aqueous layer afforded L-ara and D-glc on HLPC analysis, as described for 1.

Acknowledgment. We are grateful to Dr. T. Miyase, School of Pharmaceutical Sciences, University of Shizuoka, for mass spectral measurements.

References and Notes

(1) Misra, G.; Nigam, S. K. Quart. J . Crude Drug. Res. 1975, 16, 158-162.
(2) Nigam, S. K.; Mitra, C. R. Planta Med. 1970, 18, 44-50.
(3) Nigam, S. K.; Misra, G.; Rais, U.; Yoshikawa, K.; Kawamoto, M.; Arihara, S. Phytochemistry 1997, 44, 1329-1334.
(4) Orsini, F.; Pelizzoni, F.; Verotta, L. Phytochemistry 1991, 30, 4111-4115.
(5) Mahato, S. B.; Pal, B. C.; Nandy, A. K. Tetrahedron 1992, 48, 6717-6728.
(6) You, Y. Y.; Woo, W. S; Choi, J. S.; Kang, S. S. Arch. Pharm. Res. 1982, 5,33 - 38.
(7) Yoshikawa, K.; Nagai, N.; Yoshida, M.; Shigenobu, A. Chem. Pharm. Bull. 1993, 41, 1722-1725.
(8) Gorin, P. A. J.; Mazurek, M. Can. J . Chem. 1975, 53, 12121223.
(9) Takeda, T.; Nakamura, T.; Takashima, S.; Yano, O.; Ogihara, O. Chem. Pharm. Bull. 1993, 41, 2132-2137.
(10) Pal, B. C.; Achari, B.; Y oshikawa, K.; Arihara, S. Phytochemistry 1995, 38, 1287-1291.
(11) Ikeda, T.; Fujiwara, S.; Kinjo, J.; Nohara, T.; Ida, Y.; Shoji, J .; Shingu, T.; I sobe, R.; Kajimoto, T.; Bull. Chem. Soc. J pn. 1995, 68, 3483-3490.
(12) Konoshima, T.; Sawada, T. Chem. Pharm. Bull. 1982, 30, 2747-2760.
NP9703555

[^0]: * To whom correspondence should be addressed. Phone: (81) 886-22-9611. FAX: (81) 886-55-3051.
 † Tokushima Bunri University.
 ${ }^{\ddagger}$ King George’s Medical College.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, December 1, 1997.

